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Abstract

This paper proposes an attention-based multi-level

model with a multi-scale backbone for thermal image super-

resolution. The model leverages the multi-scale backbone

as well. The thermal image dataset is provided by PBVS

2020 in their thermal image super-resolution challenge.

This dataset contains the images with three different res-

olution scales(low, medium, high) [1]. However, only the

medium and high-resolution images are used to train the

proposed architecture to generate the super-resolution im-

ages in x2, x4 scales. The proposed architecture is based on

the Res2net blocks as the backbone of the network. Along

with this, the coordinate convolution layer and dual atten-

tion are also used in the architecture. Further, multi-level

supervision is implemented to supervise the output image

resolution similarity with the real image at each block dur-

ing training. To test the robustness of the proposed model,

we evaluated our model on the Thermal-6 dataset [20]. The

results show that our model is efficient to achieve state-of-

the-art results on the PBVS dataset. Further the results on

the Thermal-6 dataset show that the model has a decent

generalization capacity.

1. Introduction

The task of generating a higher resolution image from

the lower resolution input images is known as image super

resolution[17]. Due to the development of automation in

every field, the super-resolution of images is of vital im-

portance. For example, digital cameras, with their advance-

ment, uses super-resolution for image enhancement tasks.

The utmost importance of image super-resolution task is

when images are captured using low pixel devices and send

to some server using the internet connectivity for further

analysis. In this case, the image resolution is kept low due

to the problem of limited hardware resources at the client
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location or sending pictures to the server with a high FPS.

These images are further passed to a super-image resolution

network on the server for further analysis to get the desired

results. However, in recent years, imaging techniques have

also been developed a lot. Nowadays, practitioners can cap-

ture almost all the visible spectrum regions of an image in-

cluding the thermal spectrum. Thermal images are infrared

radiation emitted by all objects with different temperatures

and temperatures above absolute zero.[20] [5]. Unlike the

RGB images, the images captured in the thermal spectral

band are not affected by the lighting and other environ-

mental conditions, hence these images have wide applica-

tions such as medicine, military, object detection, recog-

nition, and tracking[5]. However, capturing these thermal

images with a high resolution is quite expensive because of

the expensive equipments[20]. Hence, the requirement of

high-resolution thermal images at an affordable cost is the

need of time. Researchers are working on the thermal image

super-resolution as an alternative to this problem. However,

image super-resolution is always a challenging problem.

Recently, the remarkable performance of neural networks

inspired researchers to use these networks for thermal im-

age super-resolution. The approach proposed in this paper

is also a deep convolutional neural network-based approach,

which exploits the coordinate convolutional layer, multi-

scale Res2net connections, and attention modules. The pro-

posed network is novel in the following way:

• Because of the multi-level supervision, this single

model can handle the super-resolution task at different

scales (x2, x4).

• This model has more receptivity of spatial and channel

information at almost the same computational cost as

it exploits the Res2net block as the backbone of the

model.

• This model is more robust as the spatial dimensions are

expanded in Cartesian space at the start of the network

using a coordinate convolutional layer and can retain
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all the spatial and channel information with the help of

dual attention at the end.

Rest of the paper is organized in 5 sections. Section 2 con-

sists of the brief review of existing studies. Detailed archi-

tecture is discussed in section 3. Section 4 and section 5

deals with details of the experimental set up and the results

of ablation studies respectively. Lastly, section 6 deals with

the conclusion and future scope of work.

2. Related work

Due to the wide applications, image super-resolution is

widely studied in the last few decades. However, with the

recent development in deep convolutional neural networks

and their impressive performance, researchers in this field

have also get attracted to the use of convolutional neural

networks for image super-resolution tasks. For example, [3]

constructs a three-layer deep convolutional neural network

for image super-resolution in which the features of the LR

input image are extracted and up-sampled in the last layer.

The results of this model outperformed most of the previ-

ous non-deep learning-based methods. Similarly, [11][26]

develop a model based on the residual learning which is

much deeper than the previous methods. There exist a lot

of experimentation to improve the performance of the task

of super-resolution such as [14] experimented to improve

the speed during training by removing the batch normaliza-

tion. [4][22][27] propose approaches to reduce the com-

plexity and the cost of the image super-resolution task. Fur-

ther, the HR images generated using generative adversar-

ial networks have also given some impressive results[13].

However, all these approaches have discussed the super-

resolution of the images in the RGB spectrum. There are

only a few studies that develop the approaches to gen-

erate high-resolution(HR) images from the low-resolution

(LR) thermal images. Recently [21] propose a deep CNN

network with residual blocks exploiting dense connection.

Similarly, [17] develop a model based on the Cycle GAN

architecture for re-scaling the thermal images from LR to

HR. The present work is also a deep convolutional network

that is based on some attentions module and exploits the

multi-level supervision to train the network.

3. Proposed Architecture

This section provides the details of our proposed archi-

tecture for the task of generating x2 and x4 resolution im-

ages which are acquired at two different resolutions. The

proposed approach is based on the neural network which

leverages the multi-scale backbone and multi-level supervi-

sion to map the information between LR images and HR im-

ages and between MR images and HR images of a different

domain. Fig.1 represents the details of the proposed archi-

tecture. As shown in the figure, the proposed architecture

is a simple six-block stacked network. Each block consists

of one convolutional layer followed by two Res2net blocks

[6]. The output of the convolutional layer is up-sampled by

the factor 2 for x2 resolution and by factor 4 for x4 resolu-

tion using sub-pixel up-scaling layer [22]. Each up-scaled

output is then fused for generating the final high-resolution

image as well as supervised to improve the pixel-wise res-

olution as inspired in [10, 9, 16]. However, to increase the

dimensional feature information, we first mapped the input

image to the Cartesian space using the coordinate convolu-

tional layer [15] as inspired by [10, 9]. A detailed discus-

sion of each part of the network is given in the following

sections:

3.1. Dual Attention Module

The output of all up-sampled layers is concatenated.

Afterward, two-dimensional attention, both spatial and

channel, is employed on this concatenated feature map.

Since convolution operations extract informative features

by blending cross-channel and spatial features, the attention

module emphasizes meaningful features for both the spatial

and channel dimensions.

Inspired by [24, 9], for creating the channel attention, we

utilized both average pooling and max pooling features. To

create the channel attention, we first aggregated the spatial

information by creating two pooled feature maps using av-

erage pooling and max pooling, thereafter two single-layer

perceptrons are used to create the channel attention maps.

The output feature maps are then merged and a sigmoid ac-

tivation is applied to get the final channel attention. Finally,

this channel attention is multiplied with the input feature

map. Eq.(1) shows the mathematical operation of channel

attention.

CA = xXfa[w1(w0

∑n

i=1
xi

n
) + w1(w0(max(xi)))] (1)

To apply, spatial attention, the pooling operations are

done along the channel axis. Then these two max-pooled

and average pooled operations are concatenated and then a

convolutional operation is applied with 7x7 filter. Similar

to channel attention, the spatial attention is then multiplied

to the input feature map. Eq.(2) shows the mathematical

operation involve in spatial attention.

SA = xXfconv[

∑n

i=1
xi

n
‖max(xi))] (2)

We have used the sequential way of applying attention. The

channel attention is applied to the input features generated

by the Res2net block. The output is then forwarded to spa-

tial attention. Hence the combined attention is the spatial

attention on the channel attention as shown in Eq.(3).

attention = SA(CA(x)) (3)
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Figure 1: (a) Proposed Model: A Super-Resolution multi-level supervision model with multi-scale Backbone; (b) multi-scale

Backbone: A Res2net block

where, x represents the input feature map, fa and fconv
represent the sigmoid activation function and 7x7 convo-

lutional operation respectively. w0 and w1 are the shared

single layer perceptrons.

3.2. Res2net block based Backbone

As the backbone of the proposed network, Res2net

block[6] is used. The Res2net block is a single Res2net

block that has a stronger feature extraction ability without

any additional computing complexities. As described in [6]

and shown in Figure 1(b), firstly, 1x1 convolution is applied

to the input feature map. The output is then further equally

sliced into n sub-feature map in a way that each feature

map has the same spatial dimensions but c/n in the chan-

nel, where c is the number of channels in the input feature

map. Thereafter, each sub-feature map, except then 1st is

forwarded to the 3x3 convolution. The output of the convo-

lution is then added to the subsequent sub-feature map. All

the outputs are then concatenated and passed again to 1x1

convolution operation. The Res2net is then added to the in-

put feature map again. The multi-scale structure of Res2net

block gives the different number and different combinations

of the feature maps and thus a large number of the receptive

field. Due to this, the feature information at a very granular

level is retained for the next layer.

3.3. Multi-level Supervision

Inspired by [9, 16, 10], to improve the image resolution

at different scales using one model, we used multi-level su-

pervision. This helped the model to learn the features ac-

cording to the original high-resolution image. As the re-

ceptive field increases across successive layers, predictions

computed at different layers embed spatial information at

different levels. The network is able to update the weights

more efficiently, and propagate the gradient in the interme-

diary level to learn the features at each intermediary scale.

The output of the first three Res2net blocks is directly up-

sampled and supervised. However, the up-sampled output

of the third Res2net block is further passed to two more

sets of Res2net blocks, up-sampled and then to one more

set of Res2net block. The output of the last block is di-

rectly supervised as well as supervised after concatenation

along with the previous three up-sampled outputs and the

attention. This multi-level supervision guided the network

to generate the HR images progressively from the different

resolutions respectively. This enabled a single architecture

to work on both x2 and x4 resolution tasks. The detailed

ablation study shows that this multi-level supervision is im-

proving the results significantly.

4. Experimental Setup

4.1. Dataset

PBVS’2020 Dataset For generating super-resolution im-

ages, PBVS’2020 [1] provides thermal image captured us-

ing three different thermal cameras with three different res-

olutions (low 160X120, mid 320X240 and high 640X480).

As of the part of PBVS’2021 challenge, [2], only the mid

resolution and high-resolution images are used. The high-

resolution images are down-sampled by x4 with added

noise for training. For training x2 model, the mid-resolution

images are used as input, and the corresponding same scene
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high-resolution images are used as ground truth. Table 1

shows the input-output detail of the dataset and the scales

for resolution. A total of 951 images for training and 50 im-

ages for validation with each resolution (high and mid) are

shared in the development phase whereas 20 images with

each resolution are shared for the test phase[17]. A sample

image from each resolution is shown in Figure2.

Input Output

Scale Camera Scale Camera

High (HR) x1/4 FC-632O High(HR) FC-632O

Mid (MR) Axis Q290 High(HR) FC-632O

Table 1: Dataset Details

Thermal6 Dataset For testing the robustness of the pro-

posed architecture and the model trained, we tested the re-

sults on the Thermal6 dataset also. Thermal6 dataset is ac-

quired using a Tau2 camera with a resolution of 640 x 512.

A total of 101 images are there in the dataset which includes

the indoor and outdoor environment in day and night both

[20].

4.2. Training

The network is trained for five outputs which include

the four side layers and one fused output layer with low-

resolution input images. All the outputs are supervised us-

ing the loss proposed in Eq.7. Total two models are trained

to get the high-resolution images which are double (x2)

and four times(x4) in scale when compared to input im-

ages. To train both x2, x4 resolution models, the high-

resolution(HR) images captured from the FC-632O FLIR

camera are used as ground truth images. The input for

the x2 model is mid-resolution(MR) images captured from

Axis Q2901-E camera, whereas for the x4 model, the high-

resolution(HR) images are down-sampled to x/4 with added

noise as described by the organizers [2] [Refer Table 1].

Adam optimizer is used to update the weights while train-

ing. The learning rate is initialized with 0.001 and reduced

after 15 epochs to 10 percent if validation loss does not im-

prove. The batch size is set to 4. The total epochs are set to

500. However, training is stopped early when the network

got saturated. The dataset is trained using NVIDIA 1080

GTX GPU. The model is evaluated using Peak-Signal-to

Noise Ratio (PSNR) and Structural Similarity Index(SSIM)

loss.

4.3. Loss Function

To supervise the model outputs, a combination of three

different loss functions are used: mean squared error

(MSE), SSIM Loss, and Sobel edge loss (SOBEL Loss).

MSE is used for maintaining the consistency between input

and output; it is defined as:

MSE =
1

N

p∑

p=1

(f(x)− x)2 (4)

where f(x) is the pixel value of generated HR image and x is

the pixel value of HR real image.

Pixel wise Structural Similarity Loss is defined as:

SSIM Loss =
1

N

p∑

p=1

(1− SSIM(p)) (5)

where SSIM(p) structural similarity index[23] for pixel p.

Sobel loss is the mean squared error of the Sobel edge

information of the real image and the generated image. A

Sobel filter to detect the edges is applied to the generated

and real image and then this information is used to calculate

the mean squared error which is equal to the Sobel loss.

More information can be found in [25][12]. A mathematical

representation is given in equation 3:

SOBEL Loss =
1

N

N∑

i=1

(S(f(x))− S(x))2 (6)

where S(f(x)) is the sobel edge information of the generated

HR image and S(x) is the sobel edge information of the real

image.

Total loss is the sum of the all three losses.

Total Loss = MSE + SSIM Loss + SOBEL Loss (7)

5. Experimental Results

5.1. Results

Table 2 shows the results of our proposed model on the

validation images of the PBVS’2020 dataset and Thermal6

dataset.

Scale PBVS(Val) Thermal6

PSNR SSIM PSNR SSIM

x2 Scale 34.1769 0.9116 39.8235 0.9569

x4 Scale 29.813 0.7833 37.4714 0.9308

Table 2: Results of the Proposed Model on PBVS’2020 and

Thermal 6

Scale
Bicubic

Model
TISR[21] MLSM[10] Ours

x2 scale 39.59 41.24 40.89 39.82

x4 scale 34.98 37.85 37.60 37.47

Table 3: Results on Thermal 6 dataset compared to the state-

of-the-art

Moreover, the proposed model results on the Thermal-6

dataset is compared with the existing state-of-the-art meth-

ods. Table 3 shows the results of the Thermal 6 dataset.
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The model which was trained on the PBVS’2020 dataset is

used for calculating the evaluation metrics on the Thermal6

dataset. The results are at par with the previous approaches,

which show that the model is having a good generalization

capacity.

Figure 2: PBVS dataset: Generated output and the Real

Output Images in three different scale

Figure 2 and Figure 3 depicts the real image and gener-

ated images of PBVS dataset and Thermal6 dataset.

5.2. Ablation Study

To prove the efficiency of our proposed architecture, a

wide range of ablation studies have been performed. Table

4, 5,6 7and 8 shows the quantitative results calculated on

the experimentation of using and not using the multi-level

supervision (MS), the coordinate convolution layer, com-

bined loss, dual attention module, and Res2net block while

training respectively.

Multi-level

Supervi-

sion

x2 Scale x4 Scale

PSNR SSIM PSNR SSIM

Used 34.048 0.911 29.813 0.7833

Not Used 32.573 0.8107 28.329 0.7401

Table 4: Experimentation on Multi-level Supervision

The use of coordinate convolutional layer, attention, the

combined loss, and multi-supervision is having proven re-

sult in [10]. The results on the proposed model voted for

the previous studies and clearly show that the proposed ar-

chitecture is also having superior performance with a coor-

Figure 3: Thermal dataset: Real Image and Generated out-

put image in three different scale

dinate convolutional layer, multi-level supervision, and at-

tention module when compared to the scenarios where we

are not using these.

Coordinate

Convolu-

tional

x2 Scale x4 Scale

PSNR SSIM PSNR SSIM

Used 32.24 0.8187 27.144 0.7607

Not Used 31.529 0.8157 26.541 0.7135

Table 5: Ablation study of the Coordinate Convolutional

layer

Loss x2 x4

PSNR SSIM PSNR SSIM

SSIM+MSE 25.3192 0.6319 26.87 0.6319

MSE 28.9741 0.8144 28.97 0.8144

SSIM+MSE+

SOBEL
34.1769 0.911 29.813 0.7833

Table 6: Performance of the proposed architecture for vari-

ous loss functions
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Dual

Attention
x2 Scale x4 Scale

PSNR SSIM PSNR SSIM

Used 31.616 0.82532 25.704 0.7086

Not Used 30.332 0.8035 26.312 0.7284

Table 7: Experimentation on the use of Dual Attention

Further, we also experimented by replacing the state-

of-the-art backbone blocks. Table 6 shows the results

of the proposed architecture with using residual block[7],

residual-dense block[28], dense block [8] and Res2net

block[6]. According to Table 6, the proposed model is hav-

ing the best results with Res2net block.

Backbone

Block
x2 Scale x4 Scale

PSNR SSIM PSNR SSIM

Res2net 34.048 0.911 29.813 0.7833

Residual 31.4 0.9326 31.44 0.9267

Residual

Dense
30.26 0.8521 26.336 0.7515

Dense 29.085 0.8697 24.336 0.74

Table 8: Performance of the proposed architecture for vari-

ous state-of-the-art blocks as back-bone

Table 9 shows the results on the test data of PBVS 2021

test dataset.

Method x4 Scale x2 Scale

PSNR SSIM PSNR SSIM

PBVS 2020

Winner[18]
27.72 0.8758 20.02 0.7452

MLSM[10] 27.31 0.8498 20.36 0.7595

PBVS 2021

Winner[19]
30.70 0.929 20.09 0.751

Ours 29.13 0.8469 20.03 0.7484

Table 9: Results on PBVS Test dataset

6. Conclusion

This present paper proposes an attention-based multi-

level supervised network with a multi-scale backbone to

create high-resolution images with x2 and x4 scale. The

network uses residual learning and multi-scale supervision

to retain the spatial information throughout training, which

helps to improve the robustness of this model. The multi-

level supervision also enabled the model to learn the res-

olution hierarchy throughout the network. The quantitative

results and in-depth ablation study results show that the pro-

posed network is not only efficient enough to achieve the

results on the PBVS dataset for x2 and x4 scale but also

able to generalize the performance on other datasets like

Thermal6. In the future, we will exploit the same architec-

ture for images in the RGB spectrum and for other image

restoration tasks like image dehazing, image relighting, etc

in RGB as well as a thermal spectrum.
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