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Abstract

This paper proposes a novel architecture for thermal

image super-resolution. A very large dataset is provided

by PBVS 2020 in their super-resolution challenge. This

dataset contains the images with three different resolution

scales(low, medium, high) [1]. This dataset is used to train

the proposed architecture to generate the super-resolution

images in x2, x3, x4 scales. The proposed architecture is

based on the residual blocks as the base units of the net-

work. Along with this, the coordinate convolution layer

and the convolutional block attention Module (CBAM) are

also used in the architecture. Further, the multi-level super-

vision is implemented to supervise the output image reso-

lution similarity with the real image at each block during

training. To test the robustness of the proposed model, we

evaluated our model on the Thermal-6 dataset [13]. The

results show that our model is efficient to achieve the state

of art results on the PBVS’2020 dataset. Further the results

on the Thermal-6 dataset show that the model has a decent

generalization capacity.

1. Introduction

The image super-resolution involves the task of generat-

ing the high-resolution images from the low-resolution im-

ages [12]. Due to the development of automation in ev-

ery field, the super-resolution of images is of vital impor-

tance. In recent years, imaging techniques have also been

developed a lot. Nowadays, the practitioners are able to

capture almost all the visible spectrum regions of an im-

age including thermal images. Thermal images are infrared

radiation emitted by all objects with different temperatures

and temperatures above absolute zero.[13] [4]. Unlike the

RGB images, the images captured in the thermal spectral

band are not affected by the lighting and other environ-

mental conditions, hence these images have wide applica-

tions such as medicine, military, object detection, recog-

nition, and tracking[4]. However, capturing these thermal

images with a high resolution is quite expensive because

of the expensive equipments[13]. Hence, the requirement

of high-resolution thermal images at an affordable cost is

the need of time. Researchers are working on the thermal

image super-resolution as an alternative to this problem.

However, image super-resolution is always a challenging

problem. Recently, the remarkable performance of neural

network inspired the researchers in this field also. The ap-

proach proposed in this paper is also a deep convolutional

neural network-based approach, named Multi-Level Super-

vision model which exploits the coordinate convolutional

layer, residual connections, and attention modules. The pro-

posed network is novel in the following way:

• Because of the multilevel supervision, this single

model can handle the super-resolution task at three dif-

ferent scales (x2, x3, x4).

• This model is having a low complexity as it exploits

the residual connection to focus on the lost informa-

tion.

• This model is more robust as it is able to retain all the

spatial information because of the use of coordinate

convolutional layer and CBAM.

Detailed architecture is discussed in section 3.

2. Related work

Due to the wide applications, image super-resolution is

widely studied from the last few decades. However, with

the recent development in the deep convolutional neural net-

works and their impressive performance, researchers in this

field have also get attracted to the use of convolutional neu-

ral networks for super image resolution task. For example,

[2] constructs a three-layer deep convolutional neural net-

work for image super-resolution in which the features of

the LR input image are extracted and up-sampled in the

last layer. The results of this model outperformed most
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Figure 1: (a) Proposed Model: A Multi-Level Supervision Model; (b) A detailed modified residual unit

of the previous non-deep learning-based methods. Simi-

larly, [7][20] develop a model based on the residual learning

which is much deeper than the previous methods. There ex-

ist a lot of experimentation to improve the performance of

the task of super-resolution such as [10] experimented to

improve the speed during training by removing the batch

normalization. [3][15][21] propose approaches to reduce

the complexity and the cost of the image super-resolution

task. Further, the HR images generated using genera-

tive adversarial networks have also given some impressive

results[9]. However, all these approaches have discussed

the super-resolution of the images in the RGB spectrum.

There are only a few studies that develop the approaches

to generate the high-resolution(HR) images from the low-

resolution (LR) thermal images. Recently [14] propose a

deep CNN network with residual blocks exploiting dense

connection. Similarly, [12] develop a model based on the

Cycle GAN architecture for rescaling the thermal images

from LR to HR. The present work is also a deep convolu-

tional network that is based on some attentions module and

exploits the multi-level supervision to train the network.

3. Proposed Architecture

To deal with the challenge of thermal image super-

resolution, we have proposed an attention-based multi-level

supervision deep convolutional network. The detailed ar-

chitecture is presented in Figure 1(a). In the following sub-

sections of this section, we will discuss the details of each

part we used in the proposed architecture.

3.1. Residual Units

Residual units have been a proven state-of-art approach

for improving the accuracy in many domains[5][16]. In our

residual block, the lost information of the previous layer

is again infused to the network using the non-identity map-

ping. This restored information can be used to improve sim-

ilarity with the high-resolution image. Further, the skip con-

nection helped in dealing with the problem of vanishing or

exploding gradient as it bypasses the higher layer gradients

directly to the first convolution layer of the residual block.

The initial batch-normalization assisted in the fast conver-

gence of the loss. We have used Leaky Relu (0.1) as an ac-

tivation function in the residual unit as inspired by [22][6].

Figure 1(b) shows the details of the Modified Residual unit.

3.2. Convolutional Block Attention Module
(CBAM)

The CBAM block inspired by [18][6] is used to create

spatial attention on the channel attention of the fused output

of all the side layers. First of all, to create channel attention,

the spatial dimension is squeezed using max pooling and av-

erage pooling simultaneously. Exploiting both the features

improves the representation power of the network. Next,

the concatenated pooling features are passed to the convo-

lutional layer and activated between 0 and 1. The output is

further passed to the spatial attention module. The spatial



module includes the 1x1 convolution operation of the max-

pooling of all neurons. This attention is further added to the

original input.

3.3. Multi­level Supervision

Inspired by [6][11], to improve the image resolution at

different scales using one model, we used multi-level su-

pervision. This helped the model to learn the features ac-

cording to the original high-resolution image. As the re-

ceptive field increases across successive layers, predictions

computed at different layers embed spatial information at

different levels. The network is able to update the weights

more efficiently, and propagate the gradient in intermedi-

ary level to learn the features at each intermediary scale.

The output of the first three residual blocks is directly up-

sampled and supervised. However, the up-sampled output

of the third residual block is further passed to another resid-

ual block before supervision. The resulted information is

then concatenated along with the three up-sampled layers

again and the attention discussed in the previous section

is applied. This multilevel supervision guided the network

to generate the HR images progressively from the different

resolutions respectively. This enabled a single architecture

to work on all the three kind of resolution tasks. The de-

tailed ablation study shows that this multilevel supervision

is improving the results significantly.

4. Experimental Setup

4.1. Dataset

PBVS’2020 Dataset For generating super-resolution im-

ages, PBVS’2020 provides thermal image captured using

three different thermal cameras with three different resolu-

tions (low 160X120, mid 320X240 and high 640X480). A

total of 951 images for training and 50 images for testing

with each resolution are shared in the development phase

whereas 20 images with each resolution are shared for val-

idation phase[12]. A sample image from each resolution is

shown in Figure2.

Thermal6 Dataset For testing the robustness of the pro-

posed architecture and the model trained, we tested the re-

sults on the Thermal6 dataset also. Thermal6 dataset is ac-

quired using a Tau2 camera with a resolution of 640 x 512.

A total of 101 images are there in the dataset which includes

the indoor and outdoor environment in day and night both

[13].

4.2. Training

The network is trained for five outputs which include

the four side layers and one fused output layer with low-

resolution input images. All the outputs are supervised us-

ing the loss proposed in Eq.4. Total three models are trained

to get the high-resolution images which are double (x2),

triple (x3) and four times(x4) in scale when compared to in-

put images. Adam optimizer is used to update the weights

while training. The learning rate is initialized with 0.001

and reduced after 15 epochs to 10 percent if validation loss

does not improve. The batch size is set to 4. The total

epochs are set to 500. However, training is stopped early

when the network started overfitting. The dataset is trained

using Nvidia 1080 GTX GPU. The model is evaluated using

Peak-Signal-to Noise Ratio (PSNR) and Structural Similar-

ity Index(SSIM) loss.

4.3. Loss Function

To supervise the model outputs, a combination of three

different loss functions are used: mean squared error

(MSE), SSIM Loss and Sobel edge loss (SOBEL Loss).

MSE is used for maintaining the consistency between input

and output; it is defined as:

MSE =
1

N

p∑

p=1

(f(x)− x)2 (1)

where f(x) is the pixel value of generated HR image and x is

the pixel value of HR real image.

Pixel wise Structural Similarity Loss is defined as:

SSIM Loss =
1

N

p∑

p=1

(1− SSIM(p)) (2)

where SSIM(p) structural similarity index[17] for pixel p.

Sobel loss is the mean squared error of the Sobel edge

information of the real image and the generated image. A

Sobel filter to detect the edges is applied to the generated

and real image and then this information is used to calculate

the mean squared error which is equal to the Sobel loss.

More information can be found in [19][8]. A mathematical

representation is given in equation 3:

SOBEL Loss =
1

N

N∑

i=1

(S(f(x))− S(x))2 (3)

where S(f(x)) is the sobel edge information of the generated

HR image and S(x) is the sobel edge information of the real

image.

Total loss is the sum of the all three losses.

Total Loss = MSE + SSIM Loss + SOBEL Loss (4)

5. Experimental Results

5.1. Results

Table 1 shows the results of our proposed model on

the test images of the PBVS’2020 dataset and Thermal6

dataset.



Scale PBVS’2020

(Val)

PBVS’2020

(Test)

Thermal6

PSNR SSIM PSNR SSIM PSNR SSIM

x2 Scale 31.88 0.9364 25.45 0.8529 40.89 0.9616

x3 Scale 30.75 0.9260 25.96 0.8271 38.95 0.9502

x4 Scale 31.92 0.9320 27.31 0.8498 37.60 0.9427

Table 1: Results of the Proposed Model on PBVS’2020 and Thermal 6

Coord Layer CBAM Multilevel Supervision x2 scale x3 scale x4 scale

PSNR SSIM PSNR SSIM PSNR SSIM

yes yes yes 31.40 0.9326 30.23 0.9199 31.44 0.9267

yes yes no 30.04 0.8332 29.54 0.8457 30.31 0.8757

yes no yes 30.24 0.8387 28.53 0.8984 28.68 0.8854

yes no no 29.18 0.8244 27.27 0.8026 29.55 0.8315

no yes yes 30.76 0.8578 29.51 0.8490 29.36 0.8207

no yes no 29.98 0.8312 28.58 0.8591 27.43 0.8549

no no yes 31.18 0.8595 27.40 0.8177 27.89 0.8535

no no no 30.87 0.8547 28.47 0.8336 27.43 0.8296

Table 2: PSNR/SSIM of Different Experimentation in terms of COORD Layer, CBAM and Multi level supervision on

PBVS’2020 Validation set

5.2. Ablation Study

To prove the efficiency of our proposed architecture, a

wide range of ablation studies have been performed. Table 2

shows the quantitative results calculated on the experimen-

tation of using coordinate convolution (coord) layer, multi-

level supervision (MS) and attention module while training.

The results clearly show that using the proposed architec-

ture with coord layer, MS and attention module is giving

quite impressive results when compared to the scenarios

where we are not using anyone of them.

Table 3 shows the results on the Thermal 6 dataset.

The model which was trained on the PBVS’2020 dataset is

used for calculating the evaluation metrics on the Thermal6

dataset. The results are at par with the previous approaches,

which shows that the model is having a good generalization

capacity.

Scale Bicubic Model TISR[14] Ours

x2 scale 39.59 41.24 40.89

x3 scale 37.68 39.62 38.95

x4 scale 34.98 37.85 37.60

Table 3: Results on Thermal 6 dataset compared to the state

of art

Table 4 shows the results of the model trained for the x2

scale for low-resolution images. The results are compared

with the bicubic interpolation as a baseline and other pub-

lished work. Since the results are available only in the x2

scale, we have presented only x2 scale results in the com-

parison table. Figure 2 and Figure 3 depicts the real image

Method PSNR SSIM

Bicubic 16.46 0.6695

TISR[14] 17.01 0.6704

PBVS[12] 21.50 0.7218

Ours (val) 31.92 0.9320

Ours (test) 25.45 0.8529

Table 4: Results on LR set in x2 scale factor, compared with

its HR registered test set of PBVS’2020.

and generated images of PBVS’2020 dataset and Thermal6

dataset.

6. Conclusion

This present paper proposes an attention-based multi-

level supervised network to create high-resolution images.

The network exploits the residual learning and coordi-

nate convolutional layer to retain the spatial information

throughout training, which helps to improve the robustness

of this model. The multilevel supervision enabled the model

to learn the resolution hierarchy throughout the network.

Three models are trained using the same network for three

different resolution scales. The quantitative results and in-

depth ablation study results show that the proposed network

is not only efficient enough to achieve the results on the

PBVS’2020 dataset but also able to generalize the perfor-

mance on other datasets. In the future, we will exploit the

same architecture for images in the RGB spectrum and for

other image restoration tasks in RGB as well as a thermal

spectrum.



Figure 2: PBVS’2020 dataset: Generated output and the

Real Output Images in three different scale

Figure 3: Thermal dataset: Real Image and Generated out-

put image in three different scale
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